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Abstract

This project aims to make use of Natural Language Processing techniques to take Electronic
Health Records and translate them into a set of features fit for prediction in order to efficiently
and accurately track the progress of medical students. This paper details a methodology pipeline
to do so with the following steps: Labeling, Extraction and Detection, Entity Recognition, and
Feature Engineering. These steps led to a feature set in reflection of around 83.3% of the total
collection of EHRs provided. This paper concludes with a discussion of how this feature set can be
used to predict diagnosis codes for some of the patients, as well as how this work can contribute
to an automatic system for generating summaries of medical students’ academic requirements.

1 Introduction

The booming development of data science has had an enormous influence on healthcare. Data sci-
ence can improve healthcare quality by helping doctors understand clinical situations more thoroughly
and machine learning algorithms have significantly contributed to the early detection of numerous
diseases[1]. Data science can also benefit medical education, which is the focus of our Capstone.

Duke Health is one of the leading medical schools in the country. Its mission is to provide high-quality
education to medical students by strategically optimizing their training experience during clinical ro-
tations. Duke Medical School is a pioneer in the country where medical students are allowed to write
Electronic Health Records (EHR) during their clinical rotations. These clinical notes also help the
medical school keep track of what kind of medical encounters their students have completed and have
yet to do before they graduate. However, reading each individual EHR is not only labor-intensive, but
also allows room for human error. To tackle this issue, Duke Health has been collaborating with the
Duke Office of Information Technology (OIT) to create an application that can access a student’s clini-
cal notes and generate visual summaries of academic criteria they have already accomplished and have
yet to complete. This task of summarizing and evaluating clinical notes is deceptively complicated
and difficult. Currently, the team must use a completely unstructured text string for each clinical
document, which is referred to as a “bag-of-words”. However, using bag-of-words as inputs to a ma-
chine learning model does not generated the desired results. Therefore, there is an urgent demand for
Duke Health to convert clinical notes into structured data. In other words, convert the bags-of-words
into a data frame with multiple, well-processed features that a model can combine to make accurate
predictions on what type of encounter a clinical note represents.

Luckily, most clinical notes are written with a standardized structure in mind that we can work to
separate. Namely, SOAP (Subjective, Objective, Assessment and Plan) is a commonly used docu-
mentation form. These notes also tend to have what are referred to as “diagnosis codes” or, more
formally, “ICD-9 medical codes”, which are short phrases marked with a pound (#) symbol in the
Plan section of a note. Doctors use these diagnosis codes to indicate a patient’s issues and classify
the problem group (type of encounter) to which a particular note belongs to. We separated the notes
and extracted components we needed based on SOAP structure. Then we conducted entity detection
to extract medical terminology and handled the negated entities. Moreover, we converted the list of
extracted entities into an indicator table and applied feature engineering and system tagging on the
list to prepare for future prediction.
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2 Background

Previously, methods such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks
(CNN) have been used to do similar work. Much of this work focused on the ICD-9 medical codes,
where researchers have tried to map free-text clinical automatically [2]. Others parsed notes to extract
data into structured form with the help of regular expressions[3]. Finally, some previous success has
been achieved by processing text with the clinical Text Analysis and Knowledge Extraction System
(cTAKES)[4]. This is a comprehensive, robust, and open-source NLP system designed to process and
extract semantically essential clinical information from EHR. Each of these will inform our approach
to this problem.

3 Methods and Results

3.1 Pipeline

We think of the tasks for this project in the structure of a pipeline. This pipeline consists of labeling,
extraction, entity detection, and feature engineering, in that order. The following describes the details
of each of these.

3.1.1 Labeling

Electronic Health Records do not look the same for every medical department, which means the way
we work with them won’t be exactly the same either. Because of this, we need to make sure that
each of our health records are mapped so we can properly treat them accordingly. However, our data
does not come with one concrete field that indicates a note’s problem group, but instead it has three
fields that hint at it: “title”, “admission service”, and “specialty”. Most records are missing values
in at least one of these categories, so there isn’t really one of those three that could stand on its own.
However, none of them are missing a value in all three, so it is possible to combine them in order to
give each record a value. We worked with our client to determine a hierarchy for how informative
each field is. Together, we decided that we would create a new column in the data for the official
specialty type, and we would start by assigning the value in that column to the same value in “title”,
as long as that value was not null. If the value in “title” were to be missing, we turn to the value
in “admission service”, and if that value was also null, we would use “specialty”. We defined success
for this task as having a type assigned to each record in our data, which we were able to achieve by a
series of simple statements in our code where we utilized the where() function from python’s NumPy
module. However, once we achieved this original goal, we discovered that more work was necessary,
as there were several cases that needed to be handled, such as differing names for the same thing (i.e.
Ear/Nose/Throat and Otolaryngology are the same problem group but they are listed differently like
this in the data), or inconsistent notation (i.e. Pediatrics vs. PEDIATRICS). Once we made these
adjustments, we were left with 87 different encounter categories.

3.1.2 Detection and Extraction

As described earlier. Electronic Health Records are composed of four components referred to as
SOAP, which stands for Subjective, Objective, Assessment and Plan. Subjective refers to the pa-
tients’ history, Objective refers to diagnostic data, Assessment covers potential problem diagnoses,
and Plan refers to proposed treatments/courses of actions. This final section, Plan, includes the
previously introduced diagnosis codes ( ICD-9 medical codes) marked with a pound (#) symbol .
However, these components were not easily accessible to us with the format that our data came to
us in. We received all of the electronic health records as unseparated freeform text, so if we wanted
to take advantage of the SOAP components to help us find meaningful separation, we would need to
do this ourselves.

Our methodology for doing this separation consisted of four stages, detailed below.
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3.1.2.1 Filtering
We quickly discovered that some notes clearly ignore the standard SOAP format, and therefore
should be removed for this process. The majority of the notes that fell into this category were
COVID-19 vaccinations. There were also quite a few notes from the OBGYN problem specialty,
including visits such as Obstetric Antepartum/Postpartum Discharges, Fetal Heart Monitoring,
Labor Progress Updates, Newborn Summaries, Studies, and Clinical Skills Foundation Notes. There
were a few other encounter types that we found often did not follow SOAP (as opposed to previously
described categories where the notes always ignored SOAP). However, we decided to leave them
in our data pool with hopes of extracting the few that did follow. Many of these were also in the
OBGYN category. After this filtering, we were left with 69.34% of the total pool of medical notes.
The following three stages made up somewhat of an iterative process, in that they were repeated
until we achieved what we believe is our final and maximum extraction rate: 88.11%.

3.1.2.2 Detection
To extract each component, we first needed to be able to locate them, which we did using Regular
Expressions (RegEx) and by considering the logic of the medical field. We designed our RegEx
expressions to optimize extraction, which means trying to avoid false positives. This is described
in more detail in the Stage 4 section.
The following Table1 describes the phrases we used to detect each component. In our code, we
accounted for these phrases in upper case and lower case, and sometimes a combination of both.

Subjective Objective Assessment Plan

• Subjective

• Interval Hx:/Interval
Events:/Interval His-
tory

• HPI/ History of
Present Illness

• Hospital Day:/Hosp
Day

• FIRST NAME FULL

• Objective

• Examination/Exam

• Physical Exam

• Current Vital Signs

• Vitals

• Assessment
(cannot be
preceded by
“Safety” or
“General”)

• Recommendations

• Plan

Table 1: Phrases Utilized for Detection

While determining this list of phrases, we discovered that often, Assessment and Plan are grouped
together and treated as one component (about 67% of the time, to be exact), so here are the phrases
we used to find those: (Table 2)

Assessment/Plan combination

• Assessment and Plan

• Plan and Assessment

• Assessments and Plans

• Assessment and amp; Plan

• Assessment/Coordination of Care

• Assessment and Recommendations

Table 2: Phrases Utilized to Detect Assessment and Plan

With our regular expressions, we constructed a column in our dataframe for each component that
saved its beginning index, which we were then able to use for extraction/separation.
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Figure 1: Errors Found While Extracting Components

3.1.2.3 Separation
Our extraction methodology assumes that the four major SOAP components are present in the
notes, so for this step, we filtered out the notes we found to be missing one or more. Using
the indexes provided by the detection, we proceeded to separate the detected sections, following
the assumptions that 1) the end of a section is when a new section starts, or the note ends 2) the
components are in order (Subjective first, Objective second, and so on). These assumptions allowed
us to make feature columns for each of the SOAP components by assigning each as a substring of
the original note. Namely, each component would become the substring that starts at the index
of the phrase we used to identify that component, and ends at the index of the phrase we used
to identify the component we expect next (or just captures the rest of the note if it is the last
component).
However, once this was done, we found that our second assumption, where we expected the SOAP
components would be in order, was erroneous. So then, we adjusted our approach to create a
column containing a dictionary of all that note’s components mapped to its corresponding starting
index for each note. From there, we converted these standard dictionaries into ‘OrderedDict’s
(imported from collections), which allowed us to put the components in the correct order, which
then let us assign a proper ending index to each component for extraction.

3.1.2.4 Analyzing Failures
This step consisted of evaluating our performance on the previous two stages and looking for
opportunities to improve.
The Figure 1 provides an example of how we might have found shortcomings in how we were

detecting components. For instance, if we saw that this chart displayed an abnormally high number
of failures in a certain problem group, that would prompt us to take a closer look at that type of
note, which would sometimes lead to a new discovery of how a particular problem group referred
to a component (i.e. this helped us find that NEUROSURGERY used “Hospital Day:” to indicate
subjective, so we added this to our detection schema). Here, one can see that PRIMARY CARE
and OBGYN have consistently high failure rates across all four components. Even after extensive
work to improve detection over these categories, we found them to be the most irregular in terms
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of formatting.
Another way we would find failures is to analyze instances where one of the components came out
to be an empty string or a suspiciously short string. This failure was a result of a false positive in
the detection stage. In other words, because we assume that the end of a component section is the
same as the start of another, we would sometimes end up with a blank component if we incorrectly
detected the start of a category. An example of this is that we originally found that the anonymized
age of a client, formatted as X y.o. (blank years old), would sometimes mark the beginning of the
Subjective section. However, we discovered that sometimes this same phrase would be used early
on in the assessment section, like so: “Assessment: patient is X y.o. . . . ”. Therefore, if we used
“X y.o.” to detect Subjective, it would fail here and the assessment section would work out to be
simply “Assessment: patient is” (not to mention that Subjective would be completely incorrect).
Findings like this would prompt us to remove “X y.o.” from our detection schema.
The Table 3 shows the final detection rates for the four components of SOAP.

Subjective 97.9%
Objective 96.9%
Assessment 93.5%

Plan 96.5%

Table 3: Final Detection Rate of SOAP Components

3.1.2.5 Additional Separation
Having each of the SOAP components isolated made it more possible to locate the information
that is the most useful for determining what kind of issues the medical students have encountered,
which is what is often referred to as the “Physical Exam Constitutional”(PEC) section. This is the
part of Objective where medical professionals include a detailed summary of the relevant patient’s
symptoms. This is the part of the note that we used as input for the following “Entity Recognition”
section.
The process for extracting the PEC was very similar to the one detailed above, but instead of
separating the entire note into Subjective, Objective, Assessment and Plan, this time we were
separating Objective into its three parts: “Vitals”, PEC, and “Labs and Medications”. This is
also when we extracted the “diagnosis codes” out of the Plan component, a.k.a. patient problems
marked by pound(#) symbols. The rate of which we were able to extract these are shown in Table
4.

Physical Exam Constitutional 94.5%
Diagnosis Code 48.5 %

Table 4: Extraction Rate of PEC and Diagnosis Codes

3.1.3 Entity Recognition

The physical exams category separated from “Objective” discussed in the previous section contains
the symptoms a patient is presenting or not presenting. To help educators evaluate whether the
medical students are making the correct assessments given the patient’s physical exam results, an
NLP model was constructed to perform a Named Entity Recognition (NER) task that will detect the
location of the symptoms and handle the negation of symptoms in the notes. The primary source used
in this step was SpaCy, a free open-source library for NLP in Python. We applied the NER model
pretrained on a biomedical corpus from SpaCy to the data and iteratively revised it to improve the fit.

Figure 2 shows the entire pipeline of this detection model. The first step was to preprocess the
unstructured text so that it was capable of being understood and analyzed by the machine. The two
main preprocessing techniques used in this pipeline were tokenization and lemmatization. Tokeniza-
tion was to break the text into meaning units known as tokens. In our case, each word in a sentence
would be a token. Lemmatization was to identify the root of a word. For example, “runs,” “ran,”
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and “running” would all be converted into “run.” The NER task was then applied to the processed
data to detect and label “entities” in a document. In this case, an entity would be either a symptom
or a disease. The pre-trained spaCy model already had a list of entity patterns that the model was
able to detect. However, some symptoms that appeared in our notes were not on this list. Hence,
these patterns were manually added to the entity list so that when refitting the model, it was able
to detect the customized patterns. While clinical notes document whether a symptom exists in a
patient, it also documents its absence. It is important to recognize the negation cases in our data as
they can often pose a challenge to natural language processing algorithms. For example, the symptom
in the note could’ve been written as “no heart murmurs”, to which a simple search of whether “heart
murmurs” exists in the clinical notes would likely result in misclassification. Therefore, our last step
in the detection model pipeline was to correctly identify the negative existence of symptoms in a
patient. We utilized the NegEx package from SpaCy which covered various negation cases including
preceding negations like “no” and “not”, following negations like “unlikely” and “declined,” pseudo
negations like “no further” and “without further,” and terminations like “but” and “although.” If
the negation patterns were detected, then the entities would be identified as “negative entities.”

Figure 2: Detection Model Pipeline and Example

The final product of this model was a visualization showing the keywords it detects as shown in Figure
3. The visualization was very important to our project because it enabled our client to extract the
key information from a medical student’s note which then makes the evaluation of a medical student
easier.

Figure 3: Detection Model Visualization
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Although the ground truth was not available, we were able to randomly pick around 50 notes to esti-
mate the accuracy of the model. The model was able to identify most of the diseases and symptoms
correctly. For those that couldn’t be identified, we manually added them to the entity list and refitted
the model. Through this iterative step to fit the model and add patterns, we eventually got all entities
in the selected notes successfully detected by the model. In this procedure, we also noticed that some
general entities from the original list like “pain” or “weakness” were not very useful features. For
example, “not assessed due to weakness” appeared multiple times in several notes, but “weakness”
here did not refer to any specific symptoms or diseases. We ended up removing those terms to make
our detected entity list more concise.

The model was also very accurate in terms of detecting negation cases. However, when the note
had negative terms in the previous sentence but it did not end with a period, the model would get
confused and identify the entity in the next sentence as a negative entity. To fix this issue, we added
a period to mark the end of the sentence which further improved the model’s accuracy. Overall, the
model was good enough to detect both positive and negative entities.

3.1.4 Feature Tables

Once our model was able to generate a list of symptoms or diseases for each note, we were able to
convert these extracted features into an indicator table that shows the presence or absence of each
entity for every medical note using “1” or “0”. Table 5 is the example table.

Note number Weakness Bleeding Wheeze Adenopathy
1 1 1 0 0
2 0 1 0 1

Table 5: Indicator Table

The issue we initially encountered with our feature extraction was the vagueness in the entities
extracted. For example, the identification of “weakness” is rather useless unless it is localized to a
body part. Therefore, we further investigated adjective-noun tagging, and were able to allocate a
specific system for each symptom/disease. The PEC section was structured with subsections of a
system, colon, followed by a notes regarding the patient that belongs in the system (i.e. “Cardiac:
slightly tachycardic with normal rhythm.”). Each PEC section contained around 6-10 systems. We
were able to use regular expressions to isolate each system and associate the extracted features to their
systems accordingly. Given that this was the universal structure of the PEC section, the adjective-
noun tagging using RegEx was deemed the most suitable. Table 6 is the example table after tagging.

Note number Weakness
(Motor)

Bleeding
(Abdomen)

Wheeze
(Respiratory)

Adenopathy
(Cervieal)

1 1 1 0 0
2 0 1 0 1

Table 6: Indicator Table After Tagging

When generating this table, we took note to remove any duplicate features within individual notes.
This resulting table can be generated for each student’s portfolio of medical notes, which could then
produce a summary report of their academic progress. Given our initial project goal, our client and
the team are pleased with the results we are able to produce.

3.2 Future Work: Predictions

Although our client is pleased with our resulting feature table and how it will be able to help with
their problem, we can’t help but look for ways to improve. We previously mentioned that only 48.5%
of the notes contain diagnosis codes. However, our newly created feature table may be exactly what
we need to fix this, as the data is now in a format where modeling is more realistic. The notes
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containing diagnosis codes can be treated as the training set and the rest of the notes can be treated
as the testing set. The input of the model will be the indicator table of diseases and symptoms;
and the output of the model will be the diagnosis code. Because the “test set” here does not have a
diagnosis code to begin with, this means we won’t have a ground truth to use to assess the accuracy
of this model. Instead we will have to work with our client in order to determine if the diagnosis
codes our model assigns to patients are reasonable.
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