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Abstract—This report describes an effort to contribute to
progress in the video classification space by using the YouTube-
8M dataset. We trained three different models with both
detailed frame-level data and more summarized video-level
data, and then tested them on three different styles of feature
inputs (visual only, audio only, and combined audio/visual)
in order to determine the optimal way to accurately assign
multiple “tag” labels to videos. We determined our video-
level logistic regression approach to be optimal, achieving a
gAP score of 0.37 for the audio/visual combined input and
an 8% improvement in the RGB only input’s Hit@1 score as
compared to our benchmark paper: YouTube-8M: A Large-
Scale Video Classification Benchmark [1]. Our results provide
useful insights as to what features are more important for
video classification, and this work could be used to improve
the experiences for both the content creators and audiences of
YouTube.

1. Introduction

YouTube “tags” are descriptive keywords to help viewers
find video content. Content creators choose tags to highlight
when they upload their videos [2,3]. YouTube uses these
tags to organize millions of videos for downstream tasks
including sorting genre, grouping linked content and estab-
lishing search relevancy in YouTube’s search algorithm and
recommendation system [4]. However, currently, the tags
that content creators provide are not necessarily of good
quality [5]. For example, a case study focusing on videos
of entrepreneurial beauty vloggers highlights creators using
tags such as “make-up” or “fashion” for videos unrelated to
beauty to increase their visibility in the more lucrative video
themes [4]. Tagging video falls under video classification.

For this report, we sought to explore the video clas-
sification space by reviewing the literature on the subject
and then working to build an optimized model of our own,
experimenting with different types of inputs to see how they
differed in performance.

2. Background

Video classification approaches typically fall into the
categories in terms of the features they use: text-based,
audio-based, visual-based, or some combination thereof.
The text-based approach uses Optical character recognition
(OCR) to create a transcript of the dialog to analyze [6].
This approach is less common due to high error rate, often

due to misspellings and omissions in transcripts. The visual-
based approach for video classification typically treats video
frames as still images [7]. An alternative visual-based ap-
proach focuses on motions, finding generalized patterns in
optical flow and motion density, however this approach is of-
ten limited to classifying videos into binary categories such
as sport and non sports [8,9]. Audio-based models use less
computational power than visual-based models and utilize
features such as volume, pitch, and proportion of silence
[1,10]. Our work includes the audio and visual-based image
approaches, and attempts to compare the performances of
using these two inputs or their combination.

We also will be comparing how to aggregate video
frames. Large labeled image datasets such as ImageNet [11]
have encouraged extensive research in frame-level models,
which have demonstrated state-of-art results in image recog-
nition with Convolutional Neural Networks (CNN) such as
AlexNet [12] and InceptionNet [11]. Similar CNN models
have shown promising ability in audio classification [13].
However, the challenges for video classification models
remain in the need for a large dataset with quality labels
and the amount of required computational power that comes
with that [14]. Various frame visual models are usually
different in how frame features or frame predictions are
aggregated to video-level prediction. This is sometimes done
naively by averaging predictions over frames, but several
state-of-art models leverage LSTM to generate compact
features for video representation and classification [7,15].
Currently, the best performing model in this space is the
Deep Convolution Graph Network (DCGN), which applies
a variant of CNNs to gradually abstract information by
convolution. The goal is to capture the sequential relations
from frame to frame, and the hierarchical structure [16].
Bag-of-words inspired approaches are shown to have com-
parable performance [1]. Our work experiments with this
approach and the naive averaging method. We hypothesize
aggregating abstract frame features before classification or
hidden representations during the classification results in
different model performances.

3. Data

Youtube-8M is a large-scale, categorically labeled, video
dataset released in 2018 by Google. Rather than retriev-
ing the labels selected by the video creators, Youtube-8M
annotated each video by deriving labels from Knowledge
Graph entities based on video metadata, context, and content
signals. Each video is decoded at 1 frame-per-second up to
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Figure 1: How many videos contains each label in the a) train and validation set, b) test set.

the first 6 minutes. At each frame, the RGB features have
been pre-processed and extracted by a state-of-art incep-
tionV3 model in Tensorflow into 1024 float numbers [1,17].
The audio features are pre-processed using a VGG-inspired
CNN audio classification model pre-trained on previous
version of the data [1,13]. These abstracted audio features
are represented as 128 float numbers. Due to computational
power, our project uses 36k (0.6%) of the data for training
and validation, 1785 videos for test performances.

We focused on examining the distribution of the tag
labels when it came to checking for class imbalance. On
average, each video has 3 labels, and the median number is
5. The distribution of tagged labels in training + validation
is highly skewed, with “Game”, “Game Video”,”Concert”,
“Vehicle” and “Musician” attributed to more than 60% of the
videos (Fig. 1). This imbalance is more apparent in the test
data. Therefore, evaluating model performance by each class
is considered when interpreting the results. We searched for
a correlation between certain labels and view count but we
did not find one in this subset data.

4. Methods and Experiments

4.1. Data Preprocessing

We get our data from the official YouTube 8M website
where the train, validation and test data had already been
separated into training and validation folders. Since the test
folders do not contain the ground truth labels (they were
set aside for Kaggle competition), we chose a few videos
from the validation folder with available labels. Out of the
36K videos, the train+validation+test split is 85%+10%+5%.

Our dataset came in tf records, so we began by extracting
each video’s ids, RGB features, audio features and their
corresponding labels. We used the video ids for inference to
extract metadata (such as view and like counts) on 25% of
the videos used for training and validation. With the limited
training size, we also decided to only keep videos classified
with labels within the 1000 most commonly used labels as
opposed to the original 3812 from the original data. As we
plan to use a one vs all classification method, our ground
truth labels are transformed accordingly which turns our
output for each video to be (1,1000) dimensions.

4.2. Experiments

We ran three experiments in search of the best perform-
ing video classifier: 1) comparing models trained on video-
level vs. frame-level data, and 2) testing our two trained
models on three different kinds of inputs: a data frame
containing only the pre-trained visual (RGB) features, only
the pre-trained audio features, and a combination of both.
Fig2 shows the architecture of each models.

4.3. Models

4.3.1. Video-level Model: Average + Logistic . Our base-
line (Fig.2a) takes the naive aggregating approach by av-
eraging the input features before feeding into a logistic
regression classifier [1]. Using RGB input as an example,
for each video, we start with (200, 1024) with 200 being the
number of frames and 1024 the number of RGB features.
After averaging over all frames, we are left with (1,1024)
for each video. We then run a standard logistic classifier
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Figure 2: Model architecture: a) Average pooling and logistic regression b) Deep Bag of Frame

TABLE 1: Summary metrics of our models

Input level Model Input feature gAP PERR Hit@1 F1
(threshold = 0.5)

Video-level

average-pooling + logistic
RGB 0.33 0.50 0.65 0.48
audio 0.16 0.32 0.38 0.31
RGB+audio 0.37 0.53 0.70 0.53

average-pooling + MLP
RGB 0.13 0.35 0.50 0.08
audio 0.22 0.33 0.46 0.08
RGB+audio 0.20 0.35 0.49 0.08

Frame-level DBoF
RGB 0.40 0.46 0.59 0.14
audio 0.29 0.39 0.49 0.17
RGB+audio 0.12 0.30 0.58 0.21

with binary cross entropy loss. For a one-vs-all classification
method for each label, we use one-hot-encoding on the
response variable to turn it into a binary ground-truth value
with (1,1000) dimensions. An SGD optimizer with a 0.01
learning rate and batch size of 500 is used.

4.3.2. Video-level Model: Average+MLP . We also decide
on running an MLP classifier after averaging over all frames.
The goal is to see with the same aggregation method and
inputs, if a neural network classifier would assign labels
differently from the baseline described above. A dense layer
with 4096 units is introduced as a projection layer followed
by a batch normalization along with a Leaky Relu activation
and dropout layers. 4096 is our final pick among 2048 and
8192 as suggested [1]. The final layer is a dense layer with
1000 classes with a sigmoid activation. For training, the
same set-up of SGD is used with a categorical cross entropy
loss.

4.3.3. Frame-level Model: Deep Bag of Frame (DBoF)
Pooling. This approach is inspired by using bag of words
representations to aggregate frame-level features after pro-
jecting them into a higher dimension [1]. A sample of 50
random frames are picked for each video, and then are
fed into a projection layer of 2048 units with leaky Relu
activations that leads to a sparse coding, a technique similar
Fisher Vectors [18] and VLAD [19]. After batch normalizing
to help with stability, global average pooling aggregates
the frames to an overall video level representation. Instead
of adding a hidden layer before the output layer [1], we

experiment with using logistic regression to classify these
DBoF representations for shorter training time and to com-
pare how logistic regression performs with features in even
higher dimensions. An SGD optimizer with a 0.001 learning
rate and batch size of 500 is used. Figure 5 displays the
architecture for both audio and RGB inputs.

4.4. Metrics

For model evaluation, we chose to use A) Global Aver-
age Precision (gAP), Hit@1 and PERR as well as B) multi-
class ROC and precision-recall curves. We borrow group
(A) from many of our literatures, enabling us to directly
compare our models to past work [1,15,16].

gAP measures weighted average precision score over
all labels. Identifying the most salient label is often useful.
Hit@1 represents the fraction of test samples that have the
predicted most likely label in one of the one of the ground
truth label. Finally, PERR gives the strictest evaluation, as it
measures how many times the model gives a exact match to
ground truth labels if we retrieve the same number of labels
as the ground truth [1]. Evaluating our models on these
metrics will allow us to make direct comparisons between
our work and what has been accomplished in the field. In
addition, we also report weighted averaged F1-score because
it is sensitive to uneven class distribution.

Group (B) will allow us to visualize how our models
are predicting each of the labels individually, and also to
generate macro and micro scores in order to get an overall
picture of model performance. The macro-average comes
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Figure 3: a) ROC and b) PR for the average pooling + logistic regression model. The results of using visual, audio and
both inputs are shown in both plots.

Figure 4: ROC curve for predicting each label for the top 10
most frequently tagged labels. The AUC scores vary only
slightly for these 10 labels.

from getting the ROC for each label individually first, and
then taking an average (all label classes weighted the same)
whereas the micro-average is computed by aggregating con-
tributions of all classes.

5. Results

5.1. gAP, PERR, Hit@1 and F1-scores: Compar-
isons

Table 1 shows the results for our video and frame level
approaches. These metrics reveal that between our video-
level models, our logistic approach yields higher scores than
our MLP approach. For the logistic model, audio only input
yields significantly worse results as compared to the RGB
only input, implying that RGB features are more important
for video classification in this case. However, the combined
RGB and audio input did the best for this approach. For our
MLP approach, each style of input yielded similar values
across all metrics which shows that this model has no clear
preference for features. One hypothesis of why the MLP
approach has worse performance is the limited training size,
and since our MLP model projects input features into a
higher dimension, the output layer cannot predict as well.
Another factor impacting our results is the sparse use of the
less common labels in our dataset. These rare classes impact
significantly our gAP metric, which is a problem the main
benchmark paper also encounters [1].

On the frame level, our DBoF approach performs only
slightly better gAP scores than the video-level logistic model
for the RGB only and audio only inputs, showing that the
learning is similar despite the different data types. However,
for the RGB and audio combined input, gAP is worse.



Hit@1 values are pretty similar for the RGB only and audio
only inputs. It improves minimally for the combined input.

The MLP video-level and DBoF frame-level approaches
converged with a higher loss than our video-level logistic
approach for different learning rates (experimented with
between 0.01 to 0.00001) indicating that our training size
and label sparsity is our main limitations.

Overall, these results show that the video-level average
pooling and logistic layer approach has the best perfor-
mance. Compared to benchmark results for RGB only inputs
[1], we achieved an 8% improvement for Hit@1. However,
we note that this improvement might be thanks to our choice
to limit our analysis to the top 1000 labels in our dataset.

5.2. ROC and Precision-Recall Curves: Video-
Level Logistic Regression

Fig 3a, 3b and 4 provide further understanding of how
our best model performed for our different input types. Each
of these plots were made considering only the top 50 labels
in our dataset, despite using the top 1000 labels to make
predictions with our models. Using less labels for the plots
allows to get a better idea of how our models perform on the
most popular labels, without getting weighed down by the
sparsity in the rarer labels like in our other set of metrics.
The ROC plot (Fig 3a) shows a tie for first place in AUC
scores between our combined input of both RGB and audio
features and the RGB only input. The Precision-Recall Plot
(Fig 3b) breaks that tie, showing a higher AP score for the
combined RGB and audio input. The difference in AP scores
between the combined input and the RGB only input reveals
that false negatives are more frequent for the RGB input,
implying that audio features helped the model reduce its
false negative rate, although it is still lower than we might
desire at 0.71.

Fig.4 shows the individual label AUC curves for the top
10 labels of our best performing model. This is meant to
further show how all labels are not predicted equally well,
but they average out to a high performing 0.96.

6. Conclusion

We experimented with three models for multi-label video
classification using two ways to aggregate features from
frames to videos: average pooling and Deep Bag-of-Frame,
as well as different input features: visual, audio and both.
We did this to see if adding different inputs will drastically
change results compared to our benchmark paper (Abu-El-
Haija, 2016) that only uses RGB features. For our small
subset of the YouTube 8M dataset, averaging input features
and using a logistic regression classifier outperforms the
MLP classifier and Deep Bag-of-Frame aggregation meth-
ods. Compared to the benchmark results, a decrease in
prediction performance is observed when there is a relative
mis-match between feature dimension and complexity of the
classifier. Using extracted abstract representation from pre-
trained state-of-art image networks helps with downstream

classification tasks. For logistic regression classifiers, using
audio features in addition to RGB features gives a marginal
improvement in predictability. A major problem with multi-
label classification is label distribution being highly skewed.
Data augmentation should be considered before training in
future work. It would be interesting to see if we could get
better metric results from a similar project to ours after
accounting for our current limitations in label sparsity and
training size.

For application of the logistic classifier, even though
ROCs seem to suggest good predictability, we can’t make
such inference because the data is poorly represented for
the majority of the labels. It is recommended to use this
model on inputs including visual features since it has a low
performance on audio inputs. YouTube is a platform with
very diverse types of videos. It would be interesting to look
at how our model generalizes to other smaller datasets like
Sports-1M [20] with more restricted classes.
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